QUIZ 13 SOLUTIONS: LESSON 17 OCTOBER 10, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [10 pts] How much money should you invest today at an annual interest rate of 5.5% compounded continuously so that, starting two years from now, you can make annual withdrawals of $\$ 3500$ in perpetuity? Round your answer to the nearest cent.

Solution: Continuously compounded interest is given by the formula

$$
A=P e^{r t}
$$

where A is the final amount, P is the initial investment, r is the rate converted to a decimal, and t is time in years. Here, $r=.055$.

The goal is that every year, beginning two years from now, we can withdraw $\$ 3500$. We need to determine the amount we must invest so that this is possible. We first ask: how much do we need to invest so that after 2 years we have $\$ 3500$? We write

$$
3500=P_{2} e^{2.055}
$$

where P_{2} is the amount we invest now. Solving for P_{2},

$$
P_{2}=\frac{3500}{e^{.055 \cdot 2}}=3500 e^{-.055 \cdot 2}
$$

To have $\$ 3500$ after 3 years, we need to invest P_{3} where

$$
3500=P_{3} e^{.055 \cdot 3} \Rightarrow P_{3}=\frac{3500}{e^{.055 \cdot 3}}=3500 e^{-.055 \cdot 3}
$$

To have $\$ 3500$ after n years, we need to invest P_{n} where

$$
3500=P_{n} e^{.055 \cdot n} \quad \Rightarrow \quad P_{n}=\frac{3500}{e^{.055 \cdot n}}=3500 e^{-.055 \cdot n}
$$

Now, to determine the total amount we need to invest so that we can withdraw $\$ 3500$ every year starting 2 years from now, we add all of our P_{n} together. We write

$$
\begin{aligned}
\sum_{n=2}^{\infty} P_{n} & =\sum_{n=2}^{\infty} 3500 e^{-.055 \cdot n} \\
& =\sum_{n=2}^{\infty} 3500\left(e^{-.055}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} 3500\left(e^{-.055}\right)^{n+2} \\
& =\sum_{n=0}^{\infty} 3500\left(e^{-.055}\right)^{2}\left(e^{-.055}\right)^{n} \\
& =\frac{3500\left(e^{-.055}\right)^{2}}{1-e^{-.055}} \\
& \approx \$ 58,589.71
\end{aligned}
$$

